
Optimal Cutting Problem

Ana Avdzhieva, Todor Balabanov, Georgi Evtimov,
Detelina Kirova, Hristo Kostadinov, Tsvetomir Tsachev,

Stela Zhelezova, Nadia Zlateva

1. Problems Setting
One of the tasks of the Construction office of company STOBET Ltd is to

create large sheets of paper containing a lot of objects describing a building
construction as tables, charts, drawings, etc. For this reason it is necessary to
arrange the small patterns in a given long sheet of paper with a minimum wastage.

Another task of the company is to provide a way of cutting a stock material,
e.g. given standard steel rods, into different number of smaller sized details in a
way that minimizes the wasted material.

2. Problems Description
Task 1

A large piece of paper with width X = 1000 mm and length Y = 15000 mm
is given. Over this paper many small rectangles (corresponding to tables, charts,
drawings, etc.) with dimensions (ai, bi), i = 1, . . . , n should be arranged. The
goal is to arrange the rectangles in such a way that they fill the entire width of
the paper using minimal length of the sheet.

Until the study group session the company has no solution to this task.

Task 2
An unlimited stock of rods with standard section and constant length L meters

is available. According to the construction chart, ni number of details with length
li meters each, i = 1, . . . ,m has to be cut from the stock rods. The purpose is to
produce the desired quantities of details minimizing the wasted stock material.

The company handled the task using self developed algorithm which was slow
and inefficient because it was based on exhaustive search.

3. Problems Identification
Both problems are identified as cutting-stock problems. In Operations Re-

search, the cutting-stock problem is an optimization problem of cutting standard-
sized pieces of stock material into pieces of specified sizes while minimizing ma-
terial wasted. In terms of computational complexity, the problem is an NP-

Optimal Cutting Problem ESGI’113

complete problem reducible to the knapsack problem and it can be formulated as
an integer linear programming (LP) problem. Task 2 is classic one dimensional
(1D) cutting-stock problem while Task 1 is two dimensional (2D) cutting-stock
problem which is more complex.

4. Formulation and Solution Approaches
Task 2: (1D) cutting-stock problem

The standard formulation for the (1D) cutting-stock problem (but not the
only one) starts with a list of m orders, each requiring ni pieces of length li,
i = 1, . . . ,m that have to be cut from stock material (rod) of length L. We then
construct a list of all possible combinations of cuts (often called “patterns”), as-
sociating with each pattern a positive integer variable xj representing the number
of stock material pieces to be slit using pattern j. The linear cutting-stock integer
problem is then:

(1)

min
∑

j

wjxj

∑

j

aijxj = ni, ∀i = 1, . . . ,m

xj ≥ 0 and integer,

where aij is the number of times order i appears in pattern j and wj is the cost

(often the waste wj = L −
∑

i

aijli) of pattern j. In order for the elements aij ,

i = 1, . . . ,m to constitute a feasible cutting pattern, the following restriction
must be satisfied

m∑

i=1

aijli ≤ L,

aij ≥ 0 and integer.

Instead of problem (1) for minimizing the waste we prefer to consider the
equivalent to it problem for minimizing the total number of utilized rods which
is known also as bin packing problem:

(2)

min
∑

j

xj

∑

j

aijxj = ni, ∀i = 1, . . . ,m

xj ≥ 0 and integer.

50

ESGI’113 Optimal Cutting Problem

In general, the number of possible patterns grows exponentially as a function of
m and it can easily run into the millions. So, it may therefore become impractical
to generate and enumerate the possible cutting patterns.

An alternative approach uses column generation method. This method solves
the cutting-stock problem by starting with just a few patterns. It generates
additional patterns when they are needed. For the one-dimensional case, the
new patterns are introduced by solving an auxiliary optimization problem called
the knapsack problem, using dual variable information from the linear problem.
There are well-known methods for solving the knapsack problem, such as branch
and bound and dynamic programming. The column generation approach as ap-
plied to the cutting-stock problem was pioneered by Gilmore and Gomory in a
series of papers published in the 1960s, see e.g. [2].

Modern algorithms can solve to optimality very large instances of the (1D)
cutting-stock problem but their program implementations are in rule commercial
and expensive. Some free software for finding approximate solutions are available.

Although the existing fast algorithm for finding the approximate solution is
good enough, for specific purposes of the company STOBET Ltd. it was necessary
to find an algorithm relevant to the data format they use which makes the usage
of the available free software inadequate.

Task 1: (2D) cutting-stock problem
The formulation of a higher dimensional cutting-stock problem is exactly the

same as that of the one dimensional problem given in (1) and (2). The only added
complexity comes in trying to define and generate feasible cutting patterns. The
simplest two dimensional case is one in which both the stock and ordered sizes
are rectangular which is exactly our case.

5. Group Suggestions and Solutions

• For the 2D cutting-stock problem: we proposed a genetic type algorithm.

• For the 1D cutting-stock problem: we proposed a greedy type algorithm.

5.1. A Genetic Type Algorithm for Task 1: (2D) Cutting-Stock
Problem

Genetic algorithms are a robust adaptive optimization method based on bio-
logical principles. A population of strings representing possible problem solutions
is maintained. Search proceeds by recombining strings in the population. The

51

Optimal Cutting Problem ESGI’113

theoretical foundations of genetic algorithms are based on the notion that se-
lective reproduction and recombination of binary strings changes the sampling
rate of hyperplanes in the search space so as to reflect the average fitness of
strings that reside in any particular hyperplane. Thus, genetic algorithms need
not search along the contours of the function being optimized and tend not to
become trapped in local minima [3].

According to the given objective in Task 1, near optimal solution can be
absolutely acceptable. In such situations heuristics is one of the most used ways in
solving optimal cutting problems. The difficulties in 2D variation of the problem
come from the need that all rectangles should be properly arranged in the x axis
and in the y axis simultaneously.

Idea of the genetic algorithm (GA)

The proposed GA goes in the following steps:

1. Initialization;

WHILE (stop criteria is not met)
BEGIN

2. Selection;

3. Crossover;

4. Mutation;

5. Evaluation;
END

6. Report results.

When GAs (Genetic Algorithms) are applied there are three common op-
erations to be implemented: problem data encoding, crossover, mutation and
selection. In the case of 2D cutting problem we propose following parameters [1]:

• Problem data encoding is done by representing all rectangles with top/left
coordinate, width, height and orientation. Rectangles are presented in
stored ordered list as chromosome in the GA (known in the literature as
permutation encoding);

• Single cut point crossover is implemented, applied by the rules of GA’s
permutation encoding;

52

ESGI’113 Optimal Cutting Problem

• Mutation operator consists of random rotation of a rectangle into the result-
ing chromosome and random swap between two rectangles into the resulting
chromosome;

• Selection operator is based on uniform random distribution, but result chro-
mosome always replaces the worst chromosome in the population. By this
selection approach elitism rule is applied indirectly.

Some modifications were done from the original form of the GAs. At first place,
one part of the chromosomes are randomly shuffled, second part is descending
ordered by rectangles width and third part is descending ordered by rectangles
height in the initialization phase. At second place, one part of the chromosomes
are filled with all rectangles in portrait orientation, second part of the chromo-
somes are filled with all rectangles in landscape orientation and third part or the
chromosomes rectangles are in mixed orientation. All this modifications are done
in order better genetic diversity to be presented during initialization part of the
algorithm.

Fitness value evaluation is done by additional procedures for packing [1]. Be-
cause we do not keep information inside the chromosomes for the 2D placement
of the rectangles, the additional packing procedure fill the drawing sheet of pa-
per with proper amount of rectangles and after that the used length of paper is
calculated and applied as chromosome fitness value. Packing procedure proposed
in [1] is also near optimal. It does not search for the best optimal packing. Near
optimal packing is fast enough and for better arrangements GA is responsible.

5.2. A Greedy Type Algorithm for Task 2: (1D) Cutting-Stock Prob-
lem

Let unlimited quantities of steel rods with different sections (types) having
standard lengths Lk are given. Any such rod is said to be of type k. Let the
cutting length lc be given.

As input the details needed for the corresponding project are given. For each
detail are known its label, section and length li. The number of items with these
properties ni that have to be cut is also known. In Table 1 is given a sample of
real data provided by STOBET Ltd.

As output we need for any section (type) k of stock material the number of
rods utilized for producing all items with section k, the way that any of these
rods was cut (i.e. which items are cut from it and in which order) as well as the
waste from any utilized rod and the total percentage of waste obtained from all
utilized rods of section k.

53

Optimal Cutting Problem ESGI’113

Table 1. Sample data

label section
number,

ni

length,
(mm)
li, mm

single
weight
(kg/m)

element
weight
(kg)

total
weight
(kg)

L windows 9 L 50 × 4 20 5790 3.0500 17.66 353.19
L windows 10 L 50 × 4 2 4912 3.0500 14.98 29.96
plank 20 PLATE 6 × 80 20 170 0.84 16.70
plank 33 PLATE 6 × 80 4 105 0.52 2.07
plank 36 PLATE 6 × 80 24 100 0.49 11.76
plank 47 PLATE 5 × 70 10 70 0.19 1.89
plank 48 PLATE 5 × 180 10 70 0.49 4.91
plank 49 PLATE 5 × 205 3 70 0.56 1.68
plank 50 PLATE 5 × 205 3 63 0.50 1.51
profile 25 100 × 80 × 5 19 5950 9.4900 56.47 1072.84
profile 26 SHS 100 × 4 3 5950 12.0000 71.40 214.20
profile 27 RHS 100 × 50 × 5 6 5800 10.9000 63.22 379.32
profile 28 RHS 100 × 50 × 5 6 5720 10.9000 62.35 374.09
profile 29 SHS 100 × 4 3 3020 12.0000 36.25 108.74
profile30 100 × 80 × 5 1 1000 9.4900 9.49 9.49
profile 31 SHS 100 × 4 6 780 12.0000 9.36 56.16
profile 40 EQA 70 × 7 2 70 7.3800 0.52 1.03
profile 41 EQA 70 × 7 45 55 7.3800 0.41 18.27
profile 42 SHS 100 × 4 6 3974 12.0000 47.69 286.13
profile 44 SHS 40 × 4 24 246 4.4600 1.10 26.33
profile 45 SHS 40 × 4 60 230 4.4600 1.03 61.56
profile 46 SHS 40 × 4 36 230 4.4600 1.03 36.94
profile 47 SHS 40 × 4 16 200 4.4600 0.89 16.06
profile 54 EQA 70 × 7 2 6995 7.3800 51.62 103.25
profile 55 EQA 70 × 7 2 6990 7.3800 51.59 103.17
profile 56 EQA 70 × 7 9 3880 7.3800 28.63 257.71
profile 57 EQA 70 × 7 2 3880 7.3800 28.63 57.27
profile 58 EQA 70 × 7 10 3880 7.3800 28.63 286.34
profile 59 EQA 70 × 7 1 3880 7.3800 28.63 28.63
profile 60 EQA 70 × 7 11 1675 7.3800 13.84 152.21
profile 61 EQA 70 × 7 2 1670 7.3800 13.80 27.60
profile 62 EQA 70 × 7 9 1670 7.3800 13.80 124.21

Idea of the Greedy Algorithm

Sort the details by their section (type).
For details with any particular section k:
(1) Set L = Lk and make an ordered list S of all items sorted in descending

order by their lengths. All items i with li > L are labeled as impossible for cutting

54

ESGI’113 Optimal Cutting Problem

Table 2. Details of section EQA 70× 7

detail ni li, mm
1 profile 40 2 70
2 profile 41 45 55
3 profile 54 2 6995
4 profile 55 2 6990
5 profile 56 9 3880
6 profile 57 2 3880
7 profile 58 10 3880
8 profile 59 1 3880
9 profile 60 11 1875
10 profile 61 2 1870
11 profile 62 9 1870

(this is caused by constructive error and the input data have to be corrected) and
they are excluded from S.

(2) Take a stock rod of section k. Denote its unused part (remainder) by Lr,
so Lr = L.

(3) If S ̸= ∅, then take from S the first item i with li ≤ Lr, cut it from the rod
and update the remainder Lr = Lr − li − lc and the list S = S \ {i} (i.e. discard
the item i from the list).

If S = ∅ then STOP.
If Lr < mini∈S li then the cutting of the current rod is terminated, the waste

is lw = Lr and go to (2). Otherwise, go to (3).

The proposed greedy algorithm provides approximate solution.
As a rough estimate for the minimal number of rods that have to be utilized

for the solution, one may take the maximum of the numbers k1 and k2, where k1
is the the smallest integer greater than or equal to the total length of all items
divided by L, and k2 is the number of items with length li > L/2.

For the sample data in Table 1 the approximate solution obtained by the
proposed algorithm is presented in Table 5.

To illustrate how the greedy algorithm works on the sample data given in
Table 1, we consider section EQA 70 × 7 which is known to be of length L =
6000 mm and recall the cutting length is lc = 5 mm. In Table 2 there are 11
different details with this section.

The proposed greedy algorithm was implemented in JAVA, Lisp, MS Excel.
Many experimental tests were made with significant amount of data provided
by STOBET. The suggested greedy algorithm improved significantly the speed
of finding an approximate solution. How near to the optimal solution is the

55

Optimal Cutting Problem ESGI’113

Table 3. List S of details of section EQA 70× 7

detail section ni li, mm
profile 54 EQA 70 × 7 2 6995
profile 55 EQA 70 × 7 2 6990
profile 56, 57, 58, 59 EQA 70 × 7 22 3880
profile 60 EQA 70 × 7 11 1675
profile 61,62 EQA 70 × 7 11 1670
profile 40 EQA 70 × 7 2 70
profile 41 EQA 70 × 7 45 55

obtained one depends of the distribution of the particular item lengths. Because
of the nature of the company projects this distribution is in most cases even. For
the sample data it is shown in Figure 1.

Table 4. Solution for section EQA 70× 7 with L = 6000 mm

number of rods pattern 3880 1675 1670 70 55 wastage, lw
1 t1 1 1 0 2 4 45
5 t2 1 1 0 0 7 15
1 t3 1 1 0 0 6 75
4 t4 1 1 0 0 0 435
11 t5 1 0 1 0 0 440

For convenience, details with the same length are considered as details of one
and the same type. Of course, they keep their own different labels and after the
cutting is completed it is clear from which rod and at which place on it they were
cut.

In this example all items with length 3880 mm are considered as one kind
of detail and the same is for items with length 1670 mm. So, finally we have 7
details and 95 items, see Table 3.

If there are some li > L the algorithm excludes them from consideration. Here
this is the case for details labeled “profile 54” and “profile 55”.

So, we start with the first rod. After cutting one item of third length l3 =
3880 mm, the remainder of the rod becomes Lr = 2115 mm. The first item in S
with length li ≤ Lr is 1675 mm and we cut it from the rod. Then the remainder
becomes Lr = 435 mm. We cut one item with l6 = 70 mm and so on. At the
end for the first rod we obtain remainder Lr = 45 mm which is smaller than
the smallest item length and therefore the wastage for this rod is lw = 45 mm.
For the considered example the obtained cutting patterns, the number of rods
used for each pattern and the waste obtained in using that pattern are given in
Table 4.

56

ESGI’113 Optimal Cutting Problem

Total number of the utilized for the solution rods of section EQA 70× 7 is 22.
In this particular case we succeed in obtaining an exact solution. Indeed, as it
can be seen from the values of k1 and k2 for this section in Table 5 the number
of utilized rods can not be smaller than 22 and for our solution we utilize exactly
22 rods. In fact, for all sections in the sample data we obtain exact solution as it
can be seen from Table 5.

The approximate solution obtained by the previously used by STOBET Ltd
algorithm for this sample data utilized 30 rods.

Table 5. Utilized rods for the obtained by greedy algorithm
solution for data in Table 1

section k1 k2 number of utilized rods w,%
L 50 × 4 21 22 22 4,75
PLATE 6 × 80 2 0 2 46.17
PLATE 5 × 70 1 0 1 87.50
PLATE 5 × 180 1 0 1 87.50
PLATE 5 × 205 1 0 1 92.85
100 × 80 × 5 20 20 20 48.75
SHS 100 × 4 10 12 12 22.88
RHS 100 × 50 × 5 12 12 12 3.96
SHS 40 × 4 6 0 6 11.49
EQA 70 × 7 21 22 22 5.13

Fig. 1. Items quantities and length distribution

For solving (1D) cutting-stock problem we also applied the developed for the
(2D) cutting-stock problem genetic algorithm. Doing this for the sample data
the approximate solutions obtained from both algorithms (greedy and genetic)
utilized the same number of rods but, of course, in some cases they differ in
patterns of cuts.

57

Optimal Cutting Problem ESGI’113

Further Improvement of the Greedy Algorithm

A rod with a big remaining Lr will appear in few cases in the obtained by the
greedy algorithm approximate solution in cutting rods with stock length L. If Lr

of the last utilized rod is grater than 0, 7L then it is relevant to try to permute
the items in some of the patterns in order to cut the few items from the last rod
from the other utilized rods.

For the obtained approximate solution, the waste from each utilized rod is
known. The number and the lengths of details cut from the last rod are also
known. Let their lengths be d1 > d2 > d3 > · · · .

Create a list S of all utilized rods (except the last one) ordered by their
appearance in the solution.

Details are already sorted by length in descending order. For detail i with
length li we seek a detail j with length lj > li such that the permutation of one
item of length li and one item of length lj between two different rods from S is
possible. Set ε = lj − li, and call a rod from where li is cut rod i, and a rod from
where lj is cut rod j. Let the waste of rod i be wi, and the waste of rod j be
wj . If we permute li and lj between rod i and rod j, then wi will become wi + ε,
while wj will become wj − ε. The permutation (i, j) is possible if wj − ε ≥ 0.
A possible permutation (i, j) is useful if wi ≥ dk for some dk because after the
permutation an item of this length (or smaller) can be cut from rod i instead
from the last rod. If we succeed in finding enough useful permutations, the cut
of the last rod will be saved.

Preliminary part:
Find the possible permutations:

For all detail i with length li find the maximal waste from all rods in which
cutting item with length li is involved and denote it as wi.

For any detail i with length li set j = i+ 1 and create the triple (wi, wj , lj−li).
If wj ≥ lj − li the permutation (i, j) is labeled as possible and the next couple
(i, j + 1) is considered, if not no more j are considered for possible permutation
with i.

Find the useful permutations:

For any possible permutation (i, j) the smallest k with wi + lj − li ≥ dk will
be used for labeled it as k-useful. If such k does not exists the permutation is
useless.

Main part:
For item with length d1, if there is no 1-useful permutation the algorithm

stops. If not, 1-useful permutation (i, j) is done. As a result one item with
length d1 is cut from rod i. Rods i and j have to be deleted from S. Maximal

58

ESGI’113 Optimal Cutting Problem

Table 6. Initial data for RHS example
with L = 6000 mm and lc = 5 mm

section ni li, mm
RHS 100 × 50 × 4 2 5975
RHS 100 × 50 × 4 4 4135
RHS 100 × 50 × 4 6 3575
RHS 100 × 50 × 4 2 3473
RHS 100 × 50 × 4 6 1153
RHS 100 × 50 × 4 2 1127
RHS 100 × 50 × 4 14 910
RHS 100 × 50 × 4 26 810
RHS 100 × 50 × 4 108 716
RHS 100 × 50 × 4 36 715
RHS 100 × 50 × 4 288 612
RHS 100 × 50 × 4 486 365
RHS 100 × 50 × 4 54 350
RHS 100 × 50 × 4 54 340
RHS 100 × 50 × 4 18 334
RHS 100 × 50 × 4 54 330
RHS 100 × 50 × 4 36 320

wastes wi and wj have to be recalculated if necessary and the labels of (i, j) have
to be corrected if necessary. This is repeated for all items with d1, then for items
with d2, etc.

At the end, either there are left some items with length dk and no k-useful
permutations are available in which case we keep the former approximate solution,
or all items with lengths dk are cut in result of permutations and the obtained in
that way approximate solution is better than the former one (number of utilized
rods is decreased by 1).

In place of the main part, the genetic algorithm can be used. When the initial
set of useful permutations (i, j) is identified, then the index set of details I can
be divided in two parts – I1 will be the indexes of details involved in useful
permutations, and I2 will be I \ I1.

Then the utilized rods S can be divided into two parts: S1 consists of all
rods from which is cut at least one detail i involved in useful permutation and
S2 = S \ S1. We need only to permute items which are in rods from S1. Hence,
input of the genetic algorithm will be all items cut from rods from S1 as well as
the items cuts from the last rod. The rods from S2 and the rods obtained after the
greedy algorithm is applied will form the new and possibly better approximate
solution. If the result obtained by the genetic algorithm is not satisfactory one

59

Optimal Cutting Problem ESGI’113

Table 7. Input data for genetic algorithm
used for re-optimization in RHS example

section ni li, mm
RHS 100 × 50 × 4 5 3575
RHS 100 × 50 × 4 2 3473
RHS 100 × 50 × 4 2 1127
RHS 100 × 50 × 4 14 910
RHS 100 × 50 × 4 26 810
RHS 100 × 50 × 4 108 716
RHS 100 × 50 × 4 36 715
RHS 100 × 50 × 4 2 612
RHS 100 × 50 × 4 4 365
RHS 100 × 50 × 4 2 320

can enlarge the input adding in relevant way some possible permutations.
To illustrate the above, consider RHS example. Data are given in Table 6.
The greedy algorithm obtains approximate solution for which the number of

utilized rods is 109, and the total waste is 18836 mm, or 2.88%. The solution is
such that from the last rod only two items with length 320 mm are cut.

Permutations (1127, 910), (910, 810), (910, 716), (910, 715), (810, 716),
(810, 715) are identified as useful. This means that as input for the genetic
algorithm we have to consider the items cut from rods numbered from 8 to 36
in the former solution and the two items with length 320 mm. The input for
the genetic algorithm for RHS example is given in Table 7. The expected result
of 29 rods is achieved and the re-optimization was successful in this case. After
re-optimization the number of rods utilized for the new approximate solution is
108, the total waste is 12836 mm, or 1.96%.

6. Feedback from STOBET Ltd.
The company has already successfully applied the proposed algorithms and

solutions. STOBET Ltd reported:

• Task 1: The Genetic type algorithm is very powerful. For short time we
can obtain sufficiently good results. We will built-in this method in our
practice.

• Task 2: The greedy type algorithm is very fast and it is sufficiently good
for many cases. Since the proposed greedy algorithm finds approximate
solution it is possible in few cases to get not the most economical result,

60

ESGI’113 Optimal Cutting Problem

i.e. the exact solution. Therefore we can apply proposed re-optimization
or we can use memoization in dynamic optimization.

Acknowledgements. Thanks are due to Prof. Nikola Yanev for presenting
to the group a thorough review of the scientific achievements in the field.

References

[1] IICT-BAS, ESGI113, problem 3, a genetic algorithm solver,
https://github.com/TodorBalabanov/ESGI113Problem3Genetic

AlgorithmSolver

[2] D. Goldfarb, M. Todd. Chapter II. Linear programming, In: Handbooks in
OR & MS, vol. 1 (Eds. G. L. Nemhauser et al.), Elsevier, 1989.

[3] D. Whitley, T. Starkweather, C. Bogart, Genetic algorithms and neural net-
works: optimizing connections and connectivity, Parallel Computing Volume
14, Issue 3 (1990) 347-361.

61

	Page 1

